首页> 中文期刊> 《组合机床与自动化加工技术》 >基于粒子群的粗糙集属性约简与数控机床故障诊断研究

基于粒子群的粗糙集属性约简与数控机床故障诊断研究

     

摘要

After reasoning computing, fault diagnosis can automatically identify malfunction based on the fault symptoms, this paper uses the particle swarm algorithm and rough set in fault diagnosis, and propose fault diagnosis knowledge acquisition, rules optimization and fault identification based on rough set attribute reduction of particle swarm. Firstly, this paper introduces the rough set attribute reduction, secondly , the particle swarm algorithm is applied to rough set attribute reduction algorithm, finally, the correctness and superiority of this algorithm is proved from the reduction experimental results of related data sets.%数控机床故障诊断的核心任务是根据故障征兆,经过推理计算,自动识别故障发生原因,文章把粒子群算法和粗糙集运用于机械设备的故障诊断中,提出了基于粒子群的粗糙集约简的故障诊断知识获取、规则优化和故障识别.首先介绍了粗糙集属性约简,并把粒子群算法应用于粗糙集属性约简算法中,最后从对相关数据集的约简实验结果角度证明了算法的正确性和优越性.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号