首页> 中文期刊> 《建模与仿真》 >基于LGMD建模的物体深度运动方向估计方法

基于LGMD建模的物体深度运动方向估计方法

     

摘要

在移动机器人、自动驾驶、视频监控等应用领域,复杂的动态场景中,对于物体深度运动及方向检测一直是计算机视觉技术的难点。自然界中,昆虫在飞行过程中利用复眼视觉检测高度变化且视觉杂乱环境中的深度运动物体(或称为目标),是学习运动感知策略的良好范例。受飞行昆虫复眼视觉功能优势的启发,本文采用物体运动的缩放变量计算与基于LGMD (lobula giant movement detector)的改进型碰撞检测模型相结合的仿生策略,提出一种基于LGMD神经元建模的物体深度运动方向估计方法(简称LGMD-ED),通过对PPT合成动画视频和拍摄真实场景的样本视频进行仿真实验和测试,验证了本文所提新方法对于检测与估计物体远离和靠近二种典型深度运动方向的有效性。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号