首页> 中文期刊> 《西安石油大学学报:自然科学版》 >机器学习方法对砂砾岩岩屑成分的预测——以西北缘X723井百口泉组为例

机器学习方法对砂砾岩岩屑成分的预测——以西北缘X723井百口泉组为例

     

摘要

选择凝灰岩岩屑作为预测对象,对测井数据进行标准化处理,对砂砾岩储层薄片鉴定结果和测井数据进行相关性分析,优选对岩屑敏感的CNL、GR、RT、RI、SP测井参数作为训练学习的对象;分别利用SVM、BP神经网络、CART、BP神经网络-Bagging、CART-Bagging、随机森林等机器学习方法建立岩屑预测模型,对西北缘X723井百口泉组岩屑成分进行预测、对比和分析。结果表明:单个机器学习方法预测效果不佳,而经集成学习方法优化的BP神经网络-Bagging、随机森林取得较好的实验结果,尤其是随机森林的预测效果最好,平均相对误差绝对值为17.17%,证实机器学习方法在本工区预测岩屑成分是有效的,可以进行推广。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号