首页> 中文期刊> 《上海理工大学学报》 >基于预训练模型融合深层特征词向量的中文文本分类

基于预训练模型融合深层特征词向量的中文文本分类

     

摘要

为解决传统模型表示出的词向量存在序列、上下文、语法、语义以及深层次的信息表示不明的情况,提出一种基于预训练模型(Roberta)融合深层特征词向量的深度神经网络模型,处理中文文本分类的问题。通过Roberta模型生成含有上下文语义、语法信息的句子向量和含有句子结构特征的词向量,使用DPCNN模型和改进门控模型(RGRU)对词向量进行特征提取和融合,得到含有深层结构和局部信息的特征词向量,将句子向量与特征词向量融合在一起得到新向量。最后,新向量经过softmax激活层后,输出结果。在实验结果中,以F1值、准确率、召回率为评价标准,在THUCNews长文本中,这些指标分别达到了98.41%,98.44%,98.41%。同时,该模型在短文本分类中也取得了很好的成绩。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号