首页> 中文期刊> 《工程科学与技术》 >基于CUDA的并行改良随机抽样一致性算法

基于CUDA的并行改良随机抽样一致性算法

     

摘要

针对传统RANSAC的许多局限性——样本多、模型复杂或数据错误率高时计算效率低,模型检验精度与数据错误率不易合理设置,无法批处理同模型不同样本集,提出一种基于CUDA的RANSAC并行改良,在保证计算结果置信概率与传统RANSAC一致的前提下,同时对抽样、解模型及检验模型并行同步处理,最终选择出符合要求的最优模型参数。以NVIDIAGPU支持的CUDA为并行计算环境,挖掘其硬件架构的通用计算特性,设计并实现了RANSAC的高效GPU运算模式。实验表明,改良后的算法能够克服传统RANSAC的诸多局限性,且保留了其简单易用的特点。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号