首页> 中文期刊> 《西北工业大学学报》 >一种对噪音健壮的数据流分类算法

一种对噪音健壮的数据流分类算法

     

摘要

数据流挖掘中的主要问题是概念流动和噪音污染.目前的数据流挖掘算法不能有效地处理数据流中的噪音,而一个理想的学习算法应该同时拥有对概念流动的敏感性和对噪音的健壮性.文中探讨了如何使用聚类方法在数据流中区分出噪音实例和难以学习的实例,并提出了相应的概念流动检测方法.在此基础上设计了基于推进技术的集合分类器算法RobustBoosting.通过在合成数据集和实际数据集上的实验,表明文中的算法即使在高达40%的类噪音时,与AdaptiveBoosting算法[1]相比,仍能保持更高的分类准确度,更快地收敛到新的目标概念.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号