首页> 中文期刊>东北大学学报(自然科学版) >齿轮传动激励下采煤机摇臂振动特性

齿轮传动激励下采煤机摇臂振动特性

     

摘要

Experimental research was carried out to study the meshing frequency coupling laws of gear system and vibration characteristics of the rocker arm shell under the gear meshing excitation. According to the gear parameters, the meshing frequency of the system was calculated and the harmonic frequency components were obtained. Based on the finite element model and experimental modal analysis, the inherent characteristics of the rocker arm shell was obtained. Through the rocker arm dynamic characteristics experiment, the vibration accelerations were obtained. Time domain and frequency domain analysis were carried out to get the transmission system frequency coupling rules. Results show that the impact of starting is about 2 times of that of heavy load. The vibration peak occurs on the planetary transmission in steady operation. The main vibration modes of rocker arm are the third and the fifth stages. The joint of planetary and idler has the strongest coupling frequency and the main form of coupling is the combination of characteristic frequencies. Frequency coupling is one of the main reasons that lead to resonance of rocker arm.%为研究采煤机摇臂齿轮系统啮频耦合规律及齿轮传动激励下摇臂壳体振动特性,进行摇臂振动特性实验.根据齿轮参数,计算啮合频率,得到齿轮传动激励频率成分.通过有限元模型及实验模态分析,得到摇臂固有特性.通过振动特性实验,测量摇臂振动加速度,进行时域及频域分析,得到传动系统啮频耦合规律.结果表明:传动系统启动冲击约为重载截割冲击的2倍;平稳运行时行星级振动峰值最大;摇臂形成了以第3、第5阶振型为主的弹性振动;行星级与惰轮级结合处频率耦合作用最强,主要形式为各特征频率倍频组合频率.频率耦合是造成摇臂共振的主要原因.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号