首页> 中文期刊> 《南京理工大学学报:自然科学版》 >基于反向K近邻和密度峰值初始化的加权Kmeans聚类入侵检测算法

基于反向K近邻和密度峰值初始化的加权Kmeans聚类入侵检测算法

     

摘要

传统Kmeans聚类算法的性能易受初始类簇中心随机性和类簇中心计算的迭代过程中边缘点和离群点反复计入的影响,为了避免这些影响,该文提出一种基于反向K近邻和密度峰值初始化的加权Kmeans聚类算法。通过样本的近邻信息计算每个样本的反向K近邻,针对不同规模、不同密度分布数据集,可以自适应地搜索密度峰值点作为初始类簇中心;自适应设定相对簇半径,并通过样本加权进行类簇中心迭代,在不同数据分布下可以有效降低边缘点和离群点对聚类结果的影响。试验结果证明,该算法在聚类性能提升的同时迭代次数大幅降低,随着入侵行为类型和数据规模的增加,该文聚类算法仍体现出较好的性能,且在发现未知攻击类型上效果显著。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号