首页> 中文期刊> 《吉林大学学报(理学版)》 >PCR-RBF-SVM预测模型在财政数据中的应用

PCR-RBF-SVM预测模型在财政数据中的应用

     

摘要

通过使用支持向量机算法将主成分回归的线性预测结果和径向基神经网络的非线性预测结果相结合,提出一种新的预测模型,该模型提高了预测精度,解决了预测方式单一的问题.将新预测模型应用于财政数据预测结果表明,与传统主成分回归和径向基神经网络方法相比,该模型预测效果更好.%On the basis of support vector machine algorithm and the result of principal component regression of the linear prediction and radial basis function neural network of the non-linear prediction, a new forecasting model was proposed by which one can effectively improve the prediction accuracy and solve the problem of single prediction. Application of the new prediction model to the prediction of finance data showed that compared with the traditional principal component regression and radial basis neural network method, the new model has better effect and practical significance in prediction.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号