首页> 中文期刊> 《信息工程大学学报》 >WGAN-GP数据增强及预训练模型的SAR目标识别方法

WGAN-GP数据增强及预训练模型的SAR目标识别方法

     

摘要

合成孔径雷达自动目标识别(SAR ATR)技术广泛应用于目标监测等军事领域,但标记SAR样本难以获得限制了现有识别技术的使用。提出一种基于带梯度惩罚的生成对抗网络(WGAN-GP)和预训练模型相结合的SAR目标识别方法,利用WGAN-GP对小样本训练数据集进行扩充后,输入到大规模遥感图像场景(RESISC)分类数据集预训练后的卷积神经网络(CNN)模型中进行训练,最终得到SAR目标识别结果。利用运动和静止目标获取识别(MSTAR)数据集检测算法能力,实验结果表明,所提方法所使用的WGAN-GP对比其他生成对抗网络在SAR样本增强上具备性能优势,而RESISC45数据集的选取能有效提升分类器预训练的能力。与现有研究成果相比,所提方法在提高SAR目标识别精度和CNN模型收敛速度上具备优势。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号