首页> 中文期刊> 《功能高分子学报》 >多孔载药n-HA/PEEK/CS复合材料的制备与性能

多孔载药n-HA/PEEK/CS复合材料的制备与性能

         

摘要

首先以纳米羟基磷灰石(n-HA)、聚醚醚酮(PEEK)、壳聚糖(CS)为原材料进行复合,制得n-HA/PEEK/CS复合材料;然后采用聚乙烯吡咯烷酮(PVP)/NaCl作为致孔剂对复合材料进行致孔,载入抗生素类药物红霉素(EM),制备出一种新型多孔载药复合骨修复材料n-HA/PEEK/CS/EM.通过傅里叶红外光谱(FT-IR)、扫描电镜(SEM)、力学测试、紫外-可见分光光度计(UV-Vis)表征了该复合材料的形貌结构、力学性能及药物缓释性能.结果表明:当m(PVP):m(NaCl)=1:6时,可以得到孔隙率为51.6%、抗压强度为6.98 M Pa的n-HA/PEEK/CS/EM 复合材料;当CS的质量分数由0增加到30% 时,最大药物释放质量浓度由39.8 μg/mL增加到52.0 μg/mL;药物载入后无新化学键生成;材料形成了三维立体多孔结构,孔径为5~50 μm,有利于营养物质的运输及细胞、组织的长入.%Firstly,n-HA/PEEK/CS(nano-hydroxyapatite/polyether ether ketone/chitosan)composite materials were prepared using nano-hydroxyapatite(n-HA),polyether ether ketone(PEEK)and chitosan (CS)as raw materials.Then the drug-delivering bone-repair materials were synthesized via forming holes using polyvinylpyrrolidone(PVP)and sodium chloride(NaCl)as the porogen and loading the antibiotic erythromycin(EM)into the n-HA/PEEK/CS composite material.By adjusting the dosage of PVP,the composite materials with different porosities were obtained.The morphology and structure of the as-prepared composite materials were characterized by Fourier Transform Infrared Spectroscopy(FT-IR)and Scanning Electron Microscope(SEM).The mechanical properties of the composite materials were tested by mechanical measurements,with the compressive strength and the brittle broken degrees of the composite materials being measured under specified test conditions respectively, the drug release performance of the composite materials being investigated by stirring basket method,and the dissolution rate of erythromycin in composite materials being determined by Ultraviolet Visible Spectrophotometer (UV-Vis).Results showed that with the augment of the PVP content,the porosity of the composite materials increased.The n-HA/PEEK/CS/EM composite material was obtained with a porosity of 51.6%and a compressive strength of 6.98 MPa when PVP and NaCl were used in a mass ratio of 1:6,which was approaching cancellous bone.When the mass fraction of the CS within the composite material was increased from 0 to 30%,the maximum drug release concentration increased from 39.8 μg/mL to 52.0 μg/mL. T he release rate of the process could be adjusted by turning the pore size of composite materials,and the maximum drug release concentration could be controlled by altering the content of chitosan in composite materials.There was no new chemical bond generation after loading the antibiotic erythromycin (EM).The composite materials formed three-dimensional porous structures and the pore diameter was between 5 μm and 50 μm,which met the requirement of artificial bone aperture,and would benefit the transportation of nutrients and the grow th of cells and tissues.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号