首页> 中文期刊> 《计算机科学与探索》 >基于大语言模型增强表征对齐的小样本持续关系抽取方法

基于大语言模型增强表征对齐的小样本持续关系抽取方法

     

摘要

关系抽取作为自然语言处理的关键任务,对于深化语言理解、构建知识图谱以及优化信息检索系统具有重要作用。然而,由于新关系不断涌现且缺乏大量标注示例,传统的监督学习方法并不适合实际场景。尽管大语言模型的出现显著提升了许多自然语言处理任务的性能,但仍然无法直接有效地解决小样本持续关系抽取任务的挑战。为了充分利用大语言模型的语义知识来缓解灾难性遗忘与过拟合问题,提出了一种基于大语言模型增强表征对齐的小样本持续关系抽取方法LAFA,通过关系实例改写、语义扩充和关系增强表征等策略,在保持数据量和计算成本较低的同时,有效提升了模型对新关系的适应性和对旧知识的保持能力。在两个关系抽取数据集FewRel、TACRED上进行实验验证,与现有方法相比,LAFA在小样本持续关系抽取任务中展现出较好的效果,尤其在增量阶段取得了最佳的实验结果。通过消融实验进一步揭示了方法中各个模块对整体性能的显著贡献。LAFA的推理效率与开销远远低于现有的基于大语言模型的方法,并且具有很强的扩展性,能够适配多种语言模型。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号