首页> 中文期刊> 《数据采集与处理》 >信息增益混合邻域粗糙集的肺部肿瘤高维特征选择算法

信息增益混合邻域粗糙集的肺部肿瘤高维特征选择算法

     

摘要

针对冗余属性和不相关属性过多对肺部肿瘤诊断的影响以及Pawlak粗糙集只适合处理离散变量而导致原始信息大量丢失的问题,提出混合信息增益和邻域粗糙集的肺部肿瘤高维特征选择算法(Information gain-neighborhood rough set-support vector machine,IG-NRS-SVM)。该算法首先提取3000例肺部肿瘤CT图像的104维特征构造决策信息表,借助信息增益结果选出高相关的特征子集,再通过邻域粗糙集剔除高冗余的属性,通过两次属性约简得到最优的特征子集,最后采用网格寻优算法优化的支持向量机构建分类识别模型进行肺部肿瘤良恶性的鉴别。从约简和分类识别两个角度验证方法的可行性与有效性,并与不约简算法、Pawlak粗糙集、信息增益和邻域粗糙集约简算法进行对比。结果表明混合算法精确度优于其他对比算法,精确度达到96.17%,并且有效降低了时间复杂度,对肺部肿瘤计算机辅助诊断具有一定的参考价值。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号