首页> 中文期刊> 《数据采集与处理》 >基于改进LS-SVM的随钻测量数据传输误码率预测

基于改进LS-SVM的随钻测量数据传输误码率预测

     

摘要

针对泥浆连续波随钻测量数据传输误码率预测精度低、数据传输过程中易受干扰信号影响等缺点,提出利用改进的最小二乘向量积(LS-SVM)对连续波数据传输误码率建立预测模型,并引用遗传算法对参数寻优,在建立模型过程中利用狄克逊准则对数据进行筛选,从而提高误码率预测的精度.在小样本数据的情况下,采用Matlab建立基于改进的最小二乘支持向量机泥浆连续波数据传输模型.仿真结果表明该模型能够有效地避免陷入局部最优问题,具有较强的泛化能力和预测能力.通过与误差反传前馈(Back propagation,BP)和Elman神经网络预测模型对比可知,该模型预测精度更高,预测值更接近于实际值,可以用于泥浆连续波数据传输误码率预测.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号