首页> 中文期刊> 《计算机研究与发展》 >挖掘数据流界标窗口Top-K频繁项集

挖掘数据流界标窗口Top-K频繁项集

     

摘要

数据流频繁项集挖掘是目前数据挖掘与知识发现领域的热点研究课题,在许多领域有重要应用.然而支持度阈值的设定需要一定的领域知识,设置不当会给后续的分析处理带来很多困难和不必要的负担,因此挖掘数据流top-K频繁项集有重要意义.提出一个挖掘数据流界标窗口top-K频繁项集的动态增量近似算法TOPSIL-Miner,为此设计了存储流数据摘要信息的概要结构TOPSIL-Tree以及动态记录挖掘相关信息的树层最大支持度表MaxSL、项目序表OIL,TOPSET 和最小支持度表MinSL等,并分析了与这些概要结构相关的挖掘特性.在此基础上研究算法的3种优化措施:1)剪枝当前数据流的平凡项集;2)挖掘过程中启发式自适应提升挖掘阈值;3)动态提升剪枝阈值.对算法的误差上界进行了分析研究.最后通过实验验证了算法的可行性、精确性和时空高效性.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号