首页> 中文期刊> 《计算机应用》 >基于知识图谱和用户画像的金融产品推荐系统

基于知识图谱和用户画像的金融产品推荐系统

     

摘要

针对目前金融行业普遍存在的金融产品信息过载、产品种类繁多、客户选择困难的问题,提出了一种基于知识图谱和用户画像的改进推荐方法。该算法通过知识图谱和用户画像技术分别计算企业与产品的相似度并线性加权融合,利用融合后的相似度矩阵对协同过滤算法进行改进,并设计实现了金融产品推荐系统。使用国网电商提供的真实数据集进行仿真实验,改进算法的F1值在0.6~0.7,而相同企业的原始协同过滤算法推荐效果的F1值在0.5~0.6。与原始协同过滤算法相比,改进算法有效缓解了数据稀疏性问题,提高了推荐效果。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号