首页> 中文期刊> 《计算机应用》 >基于预训练和多层次信息的中文人物关系抽取模型

基于预训练和多层次信息的中文人物关系抽取模型

     

摘要

关系抽取任务旨在从文本中抽取实体对之间的关系,是当前自然语言处理(NLP)领域的热门方向之一.针对中文人物关系抽取语料中语法结构复杂,无法有效学习文本语义特征的问题,提出一个基于预训练和多层次信息的中文人物关系抽取模型(CCREPMI).该模型首先利用预训练模型较强的语义表征能力生成词向量,并将原始句子分成句子层次、实体层次和实体邻近层次分别进行特征提取,最终融合句子结构特征、实体含义以及实体与邻近词的依赖关系等信息进行关系分类预测.在中文人物关系数据集上的实验结果表明,该模型的精度达到81.5%,召回率达到82.3%,F1值达到81.9%,相比BERT和BERT-LSTM等基线模型有所提升.此外,该模型在SemEval2010-task8英文数据集上的F1值也达到了81.2%,表明它对英文语料具有一定的泛化能力.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号