首页> 中文期刊> 《计算机应用》 >基于双向长短时记忆-联结时序分类和加权有限状态转换器的端到端中文语音识别系统

基于双向长短时记忆-联结时序分类和加权有限状态转换器的端到端中文语音识别系统

     

摘要

针对隐马尔可夫模型(HMM)在语音识别中存在的不合理条件假设,进一步研究循环神经网络的序列建模能力,提出了基于双向长短时记忆神经网络的声学模型构建方法,并将联结时序分类(CTC)训练准则成功地应用于该声学模型训练中,搭建出不依赖于隐马尔可夫模型的端到端中文语音识别系统;同时设计了基于加权有限状态转换器(WFST)的语音解码方法,有效解决了发音词典和语言模型难以融入解码过程的问题.与传统GMM-HMM系统和混合DNN-HMM系统对比,实验结果显示该端到端系统不仅明显降低了识别错误率,而且大幅提高了语音解码速度,表明了该声学模型可以有效地增强模型区分度和优化系统结构.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号