首页> 中文期刊> 《计算机辅助设计与图形学学报》 >多深度特征增强与顶层信息引导的边缘检测网络

多深度特征增强与顶层信息引导的边缘检测网络

     

摘要

针对现有边缘检测网络在复杂自然场景下的检测结果仍存在边缘缺失、噪声过多等问题,提出多深度特征增强与顶层信息引导的边缘检测网络.首先,采用UNet++作为主干网络提取不同深度的特征,并通过特征叠加使不同尺度的边缘更加完整;然后,在每个卷积层的侧输出后添加特征增强模块,通过引入空洞卷积增大感受野,增强多尺度信息;最后,设计顶层信息引导模块,通过在跳跃连接中引入高层的语义特征增强边缘检测效果.实验结果表明,在BSDS500,NYUDv2和Multicue这3个数据集上进行训练均取得了较好的效果,其中,BSDS500数据集上的ODS,OIS和AP指标分别达到了0.821,0.839和0.869,整体上高于现有边缘检测网络,且噪声少,主观效果也更接近真值.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号