首页> 中文期刊> 《计算机辅助设计与图形学学报》 >基于分层学习的三维模型兴趣点提取算法

基于分层学习的三维模型兴趣点提取算法

     

摘要

针对基于学习的三维模型兴趣点提取问题,提出一种兴趣点分层学习的全监督算法.提取三维模型表面所有顶点的特征向量后,将人工标注的兴趣点分为稀疏点和密集点,对于稀疏点使用整个三维模型进行神经网络训练,对于密集点则找出兴趣点分布密集的区域进行单独的神经网络训练;然后对2个神经网络进行特征匹配,得到一个用于三维模型兴趣点提取预测的分类器.测试时,提取新输入的三维模型上所有顶点的特征向量,将其输入到训练好的分类器中进行预测,应用改进的密度峰值聚类算法提取兴趣点.算法采用分层学习的策略,解决了传统算法在模型细节处难以准确提取密集兴趣点的问题.在SHREC’11数据集上的实验结果表明,与传统算法相比,该算法提取兴趣点的准确率更高,出现的遗漏点和错误点更少,对解决越来越精细的三维模型的兴趣点提取问题有较大帮助.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号