首页> 中文期刊> 《小型微型计算机系统》 >邻域欠采样的AdaBoostv算法

邻域欠采样的AdaBoostv算法

     

摘要

针对类别非平衡情况下的类重叠问题,引入了两种基于邻域的欠采样方法:共同近邻搜索欠采样和递归搜索欠采样,其主要思想是通过消除重叠区域中的负类样本来缓解类别非平衡问题,学习算法采用AdaBoost v算法,通过最大化样本的最小间隔(最优间隔)来提高分类器的分类能力.为了进一步解决非平衡数据分类问题,AdaBoost v算法的基分类器采用加权最优间隔分布机模型,对模型中的间隔均值项和铰链损失项加权,权值是依据数据的非平衡比给出的,并利用带有方差减小的随机梯度下降方法对优化模型进行求解,以提高算法的收敛速度.对比实验表明,提出的算法在非平衡数据分类问题上具有明显的优势.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号