首页> 中文期刊> 《现代信息科技》 >基于改进3D U-Net模型的肺结节分割方法研究

基于改进3D U-Net模型的肺结节分割方法研究

     

摘要

由于肺部CT图像的特征信息复杂度较高,经典3D U-Net网络在肺结节分割方面准确率较低,存在误分割等问题。基于此,提出一种基于改进3D U-Net的网络模型。通过将加入了密集块的3D U-Net网络和双向特征网络(Bi-FPN)融合,提高了模型分割精度。同时采用深度监督训练机制,进一步提高了网络性能。在公开数据集LUNA-16上对模型进行比较实验和评估,结果显示,改进后的3D U-Net网络,Dice相似系数较原模型提高4%,分割精度为93.9%,敏感度为94.3%,证明该模型在肺结节分割精度及准确率方面具有一定的应用价值。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号