首页> 中文期刊> 《智能计算机与应用》 >基于非均匀MCE准则的DNN关键词检测系统中声学模型的训练

基于非均匀MCE准则的DNN关键词检测系统中声学模型的训练

     

摘要

关键词检测是从连续语音流中检测预先定义的给定词的技术,是语音识别领域的一个重要应用。目前的关键词检测研究中,主流的方法是基于连续语音识别器的先识别后检测的两阶段方法,语音识别器的准确率对关键词检测有很大影响。本文首先在识别阶段引入深度学习技术来改善关键词检测算法的性能。进而针对识别阶段和检测阶段缺乏紧密联系,耦合度不够的问题,研究了侧重关键词的深度神经网络声学建模技术,利用非均匀的最小分类错误准则来调整深度神经网络声学建模中的参数,并利用Ada Boost算法来动态调整声学建模中的关键词权重。结果表明,利用非均匀最小分类错误准则来调整深度神经网络参数进行优化的声学模型,可以提高关键词检测的性能。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号