首页> 中文期刊> 《红外技术》 >FVIT-YOLO v8:基于多尺度融合注意机制的改进YOLO v8小目标检测

FVIT-YOLO v8:基于多尺度融合注意机制的改进YOLO v8小目标检测

     

摘要

本文研究了遥感与无人机航拍图像中的小目标检测问题。由于这类图像存在目标尺度小、目标分布密集、背景复杂等特点,使得特征提取困难。目前针对小目标检测的算法,为了提升精度,大多忽略了参数量与推理速度的影响,这使得算法缺乏实用性。针对上述问题,本文提出了一种基于轻量化的多尺度融合注意机制的改进YOLO v8小目标检测算法。算法首先在YOLO v8的FPN结构中加入F算子,设计了多尺度特征的加权融合;然后在网络预测层剔除了P4、P5预测层,加入P2层用于小目标的预测;最后对轻量化自注意力机制进行图像输入网格化分割整合改进,并用它替换了FPN中的C2f模块,使得算法具有更好的全局感知能力,并大幅降低了参数量。与YOLO v8s相比,本文算法在DOTA数据集上的mAP提升了4.4%,网络参数量下降了52%,FPS达到了46帧/s。在VisDrone数据集中,本算法在精度上提升了8.2%。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号