首页> 中文期刊> 《电子测试》 >SURF算法在通用GPU和OpenCL的优化与实现

SURF算法在通用GPU和OpenCL的优化与实现

     

摘要

Speeded Up Robust Feature(SURF)算法是在计算机视觉领域得到广泛应用的一种图像兴趣点检测和匹配方法。开放计算语言(OpenCL)提供了一个在异构体系结构上,包括GPU,CPU及其他类型处理器,编写并行程序的框架。本文介绍了如何在通用GPU和OpenCL平台上,对SURF算法进行优化与实现。本文对其中一些优化方法,例如kernel线程的配置,局部内存的使用方法等,进行了详细的对比和讨论。最终实现的OpenCL版本的算法在NVidiaGTX260平台上获得了比原始的CPU版本在IntelDual—CoreE54002.7G处理器上至少21倍的加速。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号