首页> 中文期刊> 《数字化用户:数字通讯》 >Privacy-preserved learning from non-i.i.d data in fog-assisted IoT:A federated learning approach

Privacy-preserved learning from non-i.i.d data in fog-assisted IoT:A federated learning approach

     

摘要

With the prevalence of the Internet of Things(IoT)systems,smart cities comprise complex networks,including sensors,actuators,appliances,and cyber services.The complexity and heterogeneity of smart cities have become vulnerable to sophisticated cyber-attacks,especially privacy-related attacks such as inference and data poisoning ones.Federated Learning(FL)has been regarded as a hopeful method to enable distributed learning with privacypreserved intelligence in IoT applications.Even though the significance of developing privacy-preserving FL has drawn as a great research interest,the current research only concentrates on FL with independent identically distributed(i.i.d)data and few studies have addressed the non-i.i.d setting.FL is known to be vulnerable to Generative Adversarial Network(GAN)attacks,where an adversary can presume to act as a contributor participating in the training process to acquire the private data of other contributors.This paper proposes an innovative Privacy Protection-based Federated Deep Learning(PP-FDL)framework,which accomplishes data protection against privacy-related GAN attacks,along with high classification rates from non-i.i.d data.PP-FDL is designed to enable fog nodes to cooperate to train the FDL model in a way that ensures contributors have no access to the data of each other,where class probabilities are protected utilizing a private identifier generated for each class.The PP-FDL framework is evaluated for image classification using simple convolutional networks which are trained using MNIST and CIFAR-10 datasets.The empirical results have revealed that PF-DFL can achieve data protection and the framework outperforms the other three state-of-the-art models with 3%–8%as accuracy improvements.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号