首页> 中文期刊> 《数据分析与知识发现》 >基于标签簇多构面信任关系的个性化推荐算法研究

基于标签簇多构面信任关系的个性化推荐算法研究

     

摘要

【目的】在基于多构面信任关系的个性化推荐中,解决构面难以定义以及传统信任强度计算方法的局限所导致的推荐准确性低的问题。【方法】提出一种基于标签簇的多构面信任关系定义的方法,在标签聚类得到的标签簇基础上,引用TF—IDF思想及Pearson相似度定义簇间和簇内信任关系,构建有利于反映不同构面信任强度的信任张量,并融入基于张量分解模型的个性化推荐算法中。【结果】基于Last.加数据集的仿真实验表明:从准确率、召回率和F1值各项指标上,本文提出的个性化推荐算法均有良好表现,在F1值上平均提升达2.29%。【局限】仿真实验未针对其他领域的数据集进行进一步验证,如微博、Twitter等。【结论】基于标签簇多构面信任关系的个性化推荐算法通过有效定义并全面、客观地量化用户间信任关系,从而实现推荐准确性的提高,有利于社交网络环境下提供更令用户满意的资源。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号