首页> 中文期刊> 《计算机系统应用》 >基于IIGA-BP神经网络的钢材销售预测模型

基于IIGA-BP神经网络的钢材销售预测模型

     

摘要

为克服传统BP神经网络(BP Neural Network,BPNN)在销售预测中,预测精度低、收敛速度慢的缺点.提出了一种基于改进免疫遗传算法(Improved Immune Genetic Algorithm,IIGA)优化BP神经网络的销售预测模型.改进的免疫遗传算法提出了新的种群初始化方式、抗体浓度的调节机制及自适应交叉算子、变异算子的设计方法,有效的提高了IIGA的收敛能力和寻优能力.并用IIGA优化BPNN的初始权值和阈值,改善网络参数的随机性导致BPNN输出不稳定和易陷入局部极值的缺点.以某钢铁企业的历史销售数据为例进行实证研究,利用Matlab分别构建BP、IGA-BP和IIGA-BP神经网络预测模型进行仿真对比分析.实验证明,IIGA-BP神经网络预测模型较BP神经网络预测模型预测精度提高了23.82%,较IGA-BP神经网络预测模型预测精度提高了22.02%.IIGA-BP神经网络模型对钢材销售预测的泛化性能更好,预测效果更稳定误差基本保持在[0.25,0.25]之间,预测精度大幅度提高,为企业销售预测提供了一种较为有效的方法.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号