首页> 中文期刊> 《计算机系统应用》 >基于GCN-LSTM的空气质量预测

基于GCN-LSTM的空气质量预测

     

摘要

随着我国环境监测技术的不断发展,环境空气质量的网格化监测体系越来越受到相关工作人员的青睐,为应对空气污染的网格化监测体系中的小型、微型监测站的空气质量预测问题,本文提出了一种基于GCN和LSTM的空气质量预测模型.首先利用GCN网络提取网格化监测体系中的小微型监测站之间的空间特征,然后再使用LSTM提取时间特征,最后使用线性回归层来综合时空特征并产生空气质量的预测结果.为了验证本文提出的预测模型的性能,我们使用了沈阳市浑南区的14个小微型监测站的空气质量监测数据进行实验.实验结果显示,基于GCN-LSTM的空气质量预测模型在空间关联较强的网格化监测中的小微型监测站上的预测结果的精度要优于单一的LSTM预测模型.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号