首页> 中文期刊> 《计算机系统应用》 >基于深度学习的卫星图像识别分类方法

基于深度学习的卫星图像识别分类方法

     

摘要

卫星遥感技术是一种非常重要的地球空间监测技术.卫星遥感图像经过处理后具有数据量大和数据类型复杂多样的特点,传统方法进行识别分类耗费大量人力物力.为了降低工作量,并为后续处理提供便利,本文将深度学习算法应用于卫星图像的识别分类中,设计了一种基于VGGNet的识别分类方法,利用除雾算法对训练数据进行数据增强处理,并添加岭回归正则化层,利用标签之间的相关性进行预测,使得方法达到90%以上的F2 score,并在实验部分进行了对比验证.最后利用此方法搭建了一个基于Django的在线识别分类展示系统.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号