首页> 中文期刊> 《计算机科学与应用》 >基于Hadoop平台的多模态人脸识别研究

基于Hadoop平台的多模态人脸识别研究

     

摘要

随着现代人越来越喜欢用图像记录生活,每日上传至互联网的图像都呈爆炸式增长。公安部门可以利用海量的图像数据实现网络追凶,但现实中摄像头采集到的图像以及上传至网络的图像,并非都是统一状态的图像,而是包含各种状态的图像,例如不同表情、不同动作、不同角度、不同程度的角度偏斜,不同年龄,以及有背景干扰的图像,其中部分图像会因使用的设备不同,导致上传至网络的图像既有灰白图像又有彩色图像。这些多模态图像为人脸的准确识别增加了难度,要将实际中采集到的图像从如此复杂且规模庞大的数据集中匹配与识别出来,是一件十分困难的事。针对以上问题,提出将改进后的开源人脸识别库,即face_recognition库与Hadoop平台中的MapReduce进行结合,在确保识别准确率的前提下提升人脸检测速度,实现对大规模、多模态图像的有效识别。实验证明,本文的方法能够有效解决大规模多模态图像的识别问题,实时性高,实用性强。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号