首页> 中文期刊> 《计算机科学与应用》 >基于ARIMA和LSTM的网络流量预测研究

基于ARIMA和LSTM的网络流量预测研究

     

摘要

网络流量预测是网络安全领域重要的研究方向之一,精准预测网络流量的趋势和峰值,并针对现有信息安全系统发现网络中可能存在的安全问题做出提前预警。随着各传感器的大量部署,系统已拥有大量可用数据,但是缺乏行之有效的分析方法,为此本文通过深度学习的方式对网络流量预测建立模型,提出一种基于LSTM神经网络的流量预测模型,并与ARIMA模型比较验证LSTM网络模型具有更好的性能,验证了该模型在网络流量预测中的适用性与更高的准确性。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号