首页> 外文期刊>Computer networks >A network traffic forecasting method based on SA optimized ARIMA-BP neural network
【24h】

A network traffic forecasting method based on SA optimized ARIMA-BP neural network

机译:基于SA优化Arima-BP神经网络的网络流量预测方法

获取原文
获取原文并翻译 | 示例

摘要

Network traffic forecasting provides key information for network management, resource allocation, traffic attack detection. However, traditional linear and non-linear network traffic forecasting models cannot achieve enough prediction accuracy for future traffic prediction. In order to resolve this problem, a network traffic prediction method based on SA (Simulated Annealing) optimized ARIMA (Autoregressive Integrated Moving Average model)-BPNN (Back Propagation Neural Network) is proposed in this paper, which makes comprehen-sive use of linear model ARIMA, non-linear model BPNN and optimization algorithm SA. With enhancement of the BPNN global optimization ability, it can fully realize the potential of mining linear and non-linear laws of historical network traffic data, hence improving the prediction accuracy. This paper selects the historical network traffic data of two different sampling points in the WIDE project to predict, and utilizes the MAE(Mean Absolute Error), RMSE(Root Mean Square Error), and the MAPE(Mean Absolute Percentage Error) as the evaluation index of the prediction effect. Experimental results show that our proposed method outperformed traditional network traffic prediction model, with several improvements in network traffic prediction accuracy.
机译:网络流量预测为网络管理,资源分配,流攻击检测提供关键信息。然而,传统的线性和非线性网络流量预测模型不能为未来的流量预测实现足够的预测准确性。为了解决这个问题,本文提出了一种基于SA(模拟退火)优化Arima(自回归集成移动平均模型)的网络流量预测方法-BPNN(反向传播神经网络),这使得综合使用线性模型Arima,非线性模型BPNN和优化算法SA。随着BPNN全球优化能力的提高,它可以充分实现历史网络流量数据的挖掘线性和非线性定律的潜力,从而提高了预测精度。本文选择广泛项目中的两个不同采样点的历史网络流量数据,以预测,并利用MAE(平均绝对误差),RMSE(均均值误差)和MAPE(平均绝对百分比误差)作为评估预测效应索引。实验结果表明,我们所提出的方法优于传统的网络流量预测模型,具有网络流量预测精度的几种改进。

著录项

  • 来源
    《Computer networks》 |2021年第5期|108102.1-108102.12|共12页
  • 作者单位

    Qilu Univ Technol Sch Cyber Secur Shandong Acad Sci Jinan 250353 Peoples R China;

    Qilu Univ Technol Sch Cyber Secur Shandong Acad Sci Jinan 250353 Peoples R China;

    Qilu Univ Technol Sch Cyber Secur Shandong Acad Sci Jinan 250353 Peoples R China;

    Qilu Univ Technol Sch Cyber Secur Shandong Acad Sci Jinan 250353 Peoples R China;

    Qilu Univ Technol Shandong Comp Sci Ctr Shandong Prov Key Lab Comp Networks Natl Supercomp Ctr Jinan Shandong Acad Sci Jinan 250000 Peoples R China;

    China Univ Geosci Sch Comp Sci Wuhan 430074 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    ARIMA; BP neural network; Hybrid model; Network traffic; Simulated Annealing Algorithm;

    机译:ARIMA;BP神经网络;混合模型;网络流量;模拟退火算法;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号