首页> 中文期刊> 《计算机工程》 >基于RNN集成学习的个人轨迹恢复方法

基于RNN集成学习的个人轨迹恢复方法

         

摘要

Connecting and restoring a relatively complete personal trajectory from multiple trajectory databases is important for travel recommendations and mobile navigation.Based on personal trajectory recovery, an integrated learning method for RNN is proposed.By defining a formal model of personal trajectory recovery, each training library is divided into multiple training sub-libraries by using the track point number sampling mode, and an RNN network model is used to describe the splicing degree of the personal trajectory.An integrated learning method is used to construct multiple RNN networks to achieve the goal of restoring personal trajectories.Experimental results show that this method can capture the temporal and spatial continuity of the trajectory and realize the personal trajectory recovery.%从多个轨迹数据库中连接并恢复出较为完整的个人轨迹对出行推荐和移动导航具有重要的意义.基于个人轨迹恢复, 提出RNN集成学习方法.定义个人轨迹恢复的形式化模型, 利用轨迹点数目采样模式将每个训练库划分为多个训练子库, 并采用RNN网络模型描述个人轨迹的可拼接程度, 使用集成学习方法构建多个RNN网络, 以达到恢复个人轨迹的目的.实验结果表明, 该方法可以较好地捕获轨迹时空连续性特征, 实现个人轨迹恢复.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号