首页> 中文期刊> 《计算机工程》 >基于知识图谱与深度涟漪网络的推荐系统

基于知识图谱与深度涟漪网络的推荐系统

     

摘要

利用知识图谱和深度学习进行推荐的方法得到了广泛的研究和应用,但是大多数推荐模型对物品表示建模不够完整,也未能全面捕捉和充分利用用户及物品的高阶交互信息。针对用户特征和物品特征高阶表示的提取问题,对用户与物品间的交互信息和知识图谱的关联信息进行联合提取,提出一种知识图谱交叉涟漪网络(KGCRN)。利用涟漪网络传播对用户偏好和物品特征进行建模,同时丰富两者的表示,提升推荐的性能。此外,设计一种改进的交叉压缩单元处理涟漪网络的输出,利用涟漪网络传播和交叉压缩单元的高阶特征交互获得准确、全面的物品高阶表示,提高模型推荐精度并增强模型应对数据稀疏场景的能力。在MovieLens-20M、Book-Crossing和Last.FM数据集上的实验结果表明,与KGCN、libFM、CKE等基线方法相比,KGCRN在点击通过率预测、Top-K推荐和应对数据稀疏场景下的性能均得到显著提升,其中,相比KGCN,点击通过率预测实验中KGCRN的AUC增益分别提高0.4、5.1、2.4个百分点,F1值分别提升3.29、2.86、0.96个百分点。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号