首页> 中文期刊> 《软件》 >结合多通道深度学习和随机森林的地表分类

结合多通道深度学习和随机森林的地表分类

     

摘要

地表分类技术对地面无人驾驶车辆的感知能力有着重要影响。而针对传统卷积神经网络CNN(Convolutional Neural Networks)地表分类效果不佳的问题,本文提出一种结合多通道深度学习和随机森林的地表分类算法。算法先通过图像计算得到人工设计的特征LBP;再采用多通道融合技术,将原彩色图像的RGB三通道和LBP通道加以融合形成融合图像;然后构建并预训练卷积神经网络,以此提取融合图像的关键特征信息;最后用随机森林分类器代替卷积神经网络输出层完成地表分类。实验结果表明,本文算法识别正确率达到98.56%,相比于传统卷积神经网络能取得更好的分类结果,具有一定的鲁棒能力。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号