首页> 中文期刊> 《计算机工程与科学》 >一种多网络模型融合的烟雾检测方法

一种多网络模型融合的烟雾检测方法

     

摘要

为降低云雾等类烟雾目标引起的烟雾检测虚警现象,提出一种多网络模型融合的烟雾检测方法。在采用VGG16网络提取烟雾细节特征的基础上,与ResNet50网络特征提取层进行融合,提取到更多细微特征,采用跳跃连接机制将图像信息传递到神经网络的更深层,避免烟雾图像重要特征的丢失,并解决因梯度消失导致的欠拟合问题。训练过程采用基于同构空间下的特征迁移学习方法,解决小样本训练难题,在新的目标检测领域进行重新训练,更有利于将网络模型融合,重新搭建全连接层输出检测结构,采用随机失活的方法,提高模型泛化能力。实验结果表明,与目前流行的深度卷积网络相比,该方法虚警率低,准确率和召回率高。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号