首页> 中文期刊> 《计算机工程与设计》 >基于CNN和RNN联合网络的心音自动分类

基于CNN和RNN联合网络的心音自动分类

     

摘要

为充分利用心音的全局信息,提出不依赖于分割的心音自动分类方法。对目前的心音分类方法进行总结,分析单阶段和两阶段方法的优势与不足,提出以深度学习提取更好的全局特征作为提升分类效果的新方向。使用精调的卷积神经网络和循环神经网络分别提取心音的频域和时域特征,辅以数据增强的方法进行训练。该方法在测试集的平均分类准确率达到了85.7%,达到了目前单阶段心音分类方法中的最好效果。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号