首页> 中文期刊> 《计算机工程与应用》 >一种改进的室内场景语义分割网络

一种改进的室内场景语义分割网络

     

摘要

针对目前室内场景语义分割网络无法很好融合图像的RGB信息和深度信息的问题,提出一种改进的室内场景语义分割网络.为使网络能够有选择性地融合图像的深度特征和RGB特征,引入注意力机制的思想,设计了特征融合模块.该模块能够根据深度特征图和RGB特征图的特点,学习性地调整网络参数,更有效地对深度特征和RGB特征进行融合;同时使用多尺度联合训练,加速网络收敛,提高分割准确率.通过在SUNRGB-D和NYUDV2数据集上验证,相比于包含深度敏感全连接条件随机场的RGB-D全卷积神经网络(DFCN-DCRF)、深度感知卷积神经网络(Depth-aware CNN)、多路径精炼网络(RefineNet)等目前主流的语义分割网络,所提网络具有更高的分割精度,平均交并比(mIoU)分别达到46.6%和48.0%.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号