首页> 中文期刊> 《计算机工程与应用》 >融合单纯形映射与熵加权的聚类方法

融合单纯形映射与熵加权的聚类方法

     

摘要

由于分类型和数值型属性特性的差异,设计混合类型数据聚类算法时通常需要对两种类型属性区别对待,增加了聚类算法的设计与实现难度。另外,不同属性所包含的信息量存在差异,但现有算法通常平等对待各个属性。提出了一种融合单纯形映射与信息熵加权的混合类型数据聚类算法。基于单纯形理论将分类型属性映射为高维数值属性向量,应用信息熵理论为各属性分配权重建立相似性度量公式,将该度量方法应用于K-Means算法框架得到聚类算法。在6个UCI的混合数据集上的实验表明,提出的聚类算法优于传统映射聚类算法和K-Prototype算法,在准确度上分别提高了2.70%和18.33%。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号