首页> 中文期刊> 《计算机工程与应用》 >基于量子行为粒子群优化方法的随机规划算法

基于量子行为粒子群优化方法的随机规划算法

     

摘要

在不断变化的金融市场中,多阶段投资组合优化通过周期性地重组投资对象来追求回报最大,风险最小.提出了使用基于量子化行为的粒子群优化算法(Quantum-behaved Particle Swarm Optimization,QPSO)解决多阶段投资优化问题,并使用经典的利润风险函数作为目标函数,通过算法对标准普尔指数100的不同股票和现金进行投资组合的优化研究.根据实验得出的期望收益率与方差表明,QPSO算法在寻找全局最优解方面要优于粒子群算法(Particle Swarm Optimization,PSO)和遗传算法(Genetic Algorithm,GA).

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号