首页> 中文期刊> 《计算机应用与软件》 >基于改进的Semi Boost天气聚类的CC-PSO-DBN短期光伏发电预测

基于改进的Semi Boost天气聚类的CC-PSO-DBN短期光伏发电预测

     

摘要

为了提高短期光伏发电预测的准确性,提出一种改进Semi Boost(Semi-supervised Boosting)天气聚类法和结合混沌纵横交叉的粒子群优化算法(Particle swarm optimization combined with chaos crossover,CC-PSO)优化深度置信网络(Deep Belief Network,DBN)连接权重的组合光伏发电功率预测方法.为了提高预测精度,设计并训练了Semi Boost改进的基于加权K近邻(Weighted K-nearest Neighbor,WKNN)置信度传播(Belief Propagation,BP)分类方法,对各天气类型采用对应的网络进行预测.DBN连接权重采用CC-PSO算法优化,避免出现由随机初始化导致的局部最优解现象,从而提高了DBN网络预测性能.实验结果验证了该模型的有效性.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号