首页> 中文期刊> 《计算机应用与软件》 >基于切片的深度学习SDN恶意应用程序的检测方法

基于切片的深度学习SDN恶意应用程序的检测方法

     

摘要

cqvip:SDN是一种新型网络架构,其核心技术是通过将网络设备控制面与数据面分离。然而目前针对SDN网络架构的恶意应用程序研究还较少。针对这一问题,在总结分析现有恶意应用检测方法的基础上,采用代码切片技术并基于深度学习框架提出一种面向SDN恶意应用程序的检测方法。它旨在对样本进行模块化分割并提取特征后,将特征向量以矩阵形式重组。在TensorFlow深度学习环境Keras下对SDN恶意样本进行学习和检测,实验数据表明,该方法对恶意应用程序检测率可以达到93.75%,证明了方案的可行性和科学性。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号