首页> 外文期刊>Journal of signal processing systems for signal, image, and video technology >A Method for Windows Malware Detection Based on Deep Learning
【24h】

A Method for Windows Malware Detection Based on Deep Learning

机译:基于深度学习的Windows恶意软件检测方法

获取原文
获取原文并翻译 | 示例

摘要

As the Internet rapidly develops, the types and quantity of malware continue to diversify and increase, and the technology of evading security software is becoming more and more advanced. This paper proposes a malware detection method based on deep learning, which combines malware visualization technology with convolutional neural network. The structure of neural network is based on VGG16 network. This paper proposes the hybrid visualization of malware, combining static and dynamic analysis. In hybrid visualization, we use the Cuckoo Sandbox to carry out dynamic analysis on the samples, convert the dynamic analysis results into a visualization image according to a designed algorithm, and train the neural network on static and hybrid visualization images. Finally, we test the performance of the malware detection method we propose, evaluating its effectiveness on detecting unknown malware.
机译:随着互联网迅速发展,恶意软件的类型和数量不断多样化和增加,逃避安全软件的技术变得越来越先进。本文提出了一种基于深度学习的恶意软件检测方法,将恶意软件可视化技术与卷积神经网络相结合。神经网络的结构基于VGG16网络。本文提出了恶意软件的混合可视化,结合了静态和动态分析。在混合可视化中,我们使用Cuckoo Sandbox对样品进行动态分析,根据设计的算法将动态分析结果转换为可视化图像,并在静态和混合可视化图像上训练神经网络。最后,我们测试了我们提出的恶意软件检测方法的性能,评估其对检测未知恶意软件的有效性。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号