首页> 中文期刊> 《计算机应用与软件》 >基于同步深度监督的多尺度肺结节分类

基于同步深度监督的多尺度肺结节分类

     

摘要

针对在肺结节分类中容易产生过拟合的问题,提出一种基于同步深度监督的多尺度肺结节分类方法。解决梯度消失问题,最小化分类错误并实现同一框架中同步训练多尺度肺结节图像,提高肺结节分类精确度。改进经典的AlexNet网络,使其更适合肺结节图像分类;将同步深度监督(SDS)策略纳入到AlexNet架构中,向隐藏层提供集成的同步监督;通过多尺度空间金字塔策略提取多尺度肺结节图像特征。实验结果表明,该方法的准确性达到93.68%,且在准确性、敏感度、特异度、ROC曲线下面积值上均优于其他分类方法。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号