首页> 中文期刊> 《计算机应用与软件》 >基于GR-CNN算法的网络入侵检测模型设计与实现

基于GR-CNN算法的网络入侵检测模型设计与实现

     

摘要

cqvip:针对现有网络入侵检测系统对网络行为检测准确率较低、实时性较差、泛化性能较低的问题,利用深度学习具有良好分类性能及强泛化能力等优点,设计基于增益率算法和卷积神经网络算法的网络入侵检测模型。采用增益率筛选数据集数据特征,在保证入侵检测准确率的同时,缩短卷积神经网络训练时间。实验结果表明,该模型相比其他基于机器学习的入侵检测模型具有较高的准确率和较强的泛化能力,同时优化卷积神经网络训练方式,保证准确率的同时使神经网络训练时间减少了77%。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号