首页> 中文期刊> 《计算机应用与软件》 >基于粗糙集理论和SOFM神经网络的聚类方法

基于粗糙集理论和SOFM神经网络的聚类方法

     

摘要

粗糙集理论和自组织特征映射SOFM(Self-Organizing-Feature-Map)神经网络在聚类分析中有各自的优势和劣势,结合SOFM神经网络和粗糙集理论提出一种算法.该算法利用粗糙集理论的属性约简去掉样本的冗余属性,并将处理过的数据作为SOFM神经网络的训练样本,从而减小了SOFM网络的规模,因此提高了样本的聚类效率.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号