标定方法是视线跟踪技术中的关键环节,直接影响跟踪精度和用户体验。目前头戴式跟踪系统所使用标定方法,需要多个标定点进行标定。为更快、更方便地进行标定,提出一种方法,只需一个标定点,便可提取足够的标定信息完成标定过程。该方法可适用于目前的多种映射方法,如DLT方法、多项式方法、神经网络方法等,标定时间仅需10 s,精度可达1°,与多点标定相比,效率显著提高,而精度无明显差异。此外,使用一种新的神经网络模型:ELM(极端学习机)实现了神经网络标定方法,ELM的快速学习性能,显著缩短了神经网络训练时间。%The calibration method affects the tracking accuracy and user experience directly,so it is a key link in gaze tracking technolo-gy.Current calibration method used by the head-mounted tracking system requires multiple calibration points to accomplish this process.Inorder to calibrate faster and more convenient,we present a method which only requires one calibration point for extracting sufficient calibrationinformation to complete the calibration process.This method can be applied to a variety of mapping methods used at present,such as the DLTmethod,the polynomial method,and the neural network method,etc.The calibration time takes only 10 s,and the precision reaches 1°.Compared with multi-point calibration,it significantly improves the efficiency with no noticeable difference in precision.In addition,we usea new neural network model,the ELM (extreme learning machine),to realise the neural network calibration.ELM’s fast learningperformance remarkably shortens the training time of the neural network.
展开▼