首页> 中文期刊> 《计算机应用与软件》 >基于深度学习的字轮式水表读数检测与识别

基于深度学习的字轮式水表读数检测与识别

     

摘要

现实中拍摄的字轮式水表图像的读数区域存在不同的位数和旋转角度的问题,这些问题对识别准确率造成很大的影响。针对这种情况,提出一种基于深度学习的水表读数检测与识别算法。该方法使用改进的圆盘检测算法来对水表圆盘进行检测;采用一种改进的多方向全卷积网络检测出水表的读数区域,同时提出一种图像旋转矫正算法,实现对水表读数区域的矫正与分割;对于读数识别,设计一种轻量级的神经网络,减少模型大小和加速训练过程的同时保持较高的识别精度。实验结果表明,该方法的圆盘检测率从93.97%提高到了96.38%,读数区域检测模型对不同类型的水表读数区域具有较好的检测效果,识别模型的大小从8.77 MB减少到7.32 MB,模型的训练和测试时间短,准确率达到96.44%。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号