首页> 中文期刊> 《应用数学与计算数学学报》 >Discovering Phase Field Models from Image Data with the Pseudo-Spectral Physics Informed Neural Networks

Discovering Phase Field Models from Image Data with the Pseudo-Spectral Physics Informed Neural Networks

     

摘要

In this paper,we introduce a new deep learning framework for discovering the phase-field models from existing image data.The new framework embraces the approximation power of physics informed neural networks(PINNs)and the computational efficiency of the pseudo-spectral methods,which we named pseudo-spectral PINN or SPINN.Unlike the baseline PINN,the pseudo-spectral PINN has several advantages.First of all,it requires less training data.A minimum of two temporal snapshots with uniform spatial resolution would be adequate.Secondly,it is computationally efficient,as the pseudo-spectral method is used for spatial discretization.Thirdly,it requires less trainable parameters compared with the baseline PINN,which significantly simplifies the training process and potentially assures fewer local minima or saddle points.We illustrate the effectiveness of pseudo-spec-tral PINN through several numerical examples.The newly proposed pseudo-spectral PINN is rather general,and it can be readily applied to discover other PDE-based models from image data.

著录项

  • 来源
    《应用数学与计算数学学报》 |2021年第2期|357-369|共13页
  • 作者

  • 作者单位

    犹他州立大学;

  • 原文格式 PDF
  • 正文语种 chi
  • 中图分类
  • 关键词

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号